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V
AB

 = 2 A × 2 Ω = 4 V

The voltage drop across BC is

V
BC

 = 2 A × 1 Ω = 2 V

Finally, the voltage drop across CD is

V
CD

 = 12 Ω × I
3
 = 12 Ω × 

2

3





  A = 8 V.

This can alternately be obtained by multiplying total current
between C and D by the equivalent resistance between C and D,

that is,

V
CD

 = 2 A × 4 Ω = 8 V

Note that the total voltage drop across AD is 4 V + 2 V + 8 V = 14 V.

Thus, the terminal voltage of the battery is 14 V, while its emf is 16 V.
The loss of the voltage (= 2 V) is accounted for by the internal resistance

1 Ω of the battery [2 A × 1 Ω = 2 V].

3.12  CELLS IN SERIES AND IN PARALLEL

Like resistors, cells can be combined together in an electric circuit. And
like resistors, one can, for calculating currents and voltages in a circuit,
replace a combination of cells by an equivalent cell.

FIGURE 3.20 Two cells of emf’s ε
1
 and ε

2
 in the series. r

1
, r

2
 are their

internal resistances. For connections across A and C, the combination

can be considered as one cell of emf ε
eq

 and an internal resistance r
eq

.

Consider first  two cells in series (Fig. 3.20), where one terminal of the
two cells is joined together leaving the other terminal in either cell free.
ε

1
, ε

2
 are the emf’s of the two cells and r

1
, r

2
 their internal resistances,

respectively.

Let V (A), V (B), V (C) be the potentials at points A, B and C shown in

Fig. 3.20. Then V (A) – V (B) is the potential difference between the positive

and negative terminals of the first cell. We have already calculated it in

Eq. (3.57) and hence,

AB 1 1(A) – (B) –V V V I rε≡ = (3.60)

Similarly,

BC 2 2(B) – (C) –V V V I rε≡ = (3.61)

Hence, the potential difference between the terminals A and C of the

combination is

( ) ( ) ( ) ( )AC (A) – (C) A – B B – CV V V V V V V≡ = +        

       ( ) ( )1 2 1 2– I r rε ε= + + (3.62)
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If we wish to replace the combination by a single cell between A and
C of emf ε

eq
 and internal resistance r

eq
, we would have

V
AC

 = ε
eq

– I r
eq

(3.63)

Comparing the last two equations, we get

  ε
eq

 = ε
1
 + ε

2
(3.64)

and  r
eq

 = r
1
 + r

2
(3.65)

In Fig.3.20, we had connected the negative electrode of the first to the
positive electrode of the second. If instead we connect the two negatives,

Eq. (3.61) would change to V
BC

 = –ε
2
–Ir

2
 and we will get

ε
eq

 = ε
1
 – ε2         (ε1

 > ε
2
) (3.66)

The rule for series combination clearly can be extended to any number

of cells:
(i) The equivalent emf of a series combination of n cells is just the sum of

their individual emf’s, and

(ii) The equivalent internal resistance of a series combination of n cells is
just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive

electrode. If in the combination, the current leaves any cell from
the negative electrode, the emf of the cell enters the expression
for ε

eq
 with a negative sign, as in Eq. (3.66).

Next, consider a parallel combination of the cells (Fig. 3.21).
I
1
 and I

2
 are the currents leaving the positive electrodes of the

cells. At the point B
1
, I

1
 and I

2
 flow in whereas the current I flows

out. Since as much charge flows in as out, we have

I = I
1
 + I

2
(3.67)

Let V (B
1
) and V (B

2
) be the potentials at B

1
 and B

2
, respectively.

Then, considering the first cell, the potential difference across its
terminals is V (B

1
) – V (B

2
). Hence, from Eq. (3.57)

( ) ( )1 2 1 1 1– –V V B V B I rε≡ = (3.68)

Points B
1
 and B

2
 are connected exactly similarly to the second

cell. Hence considering the second cell, we also have

( ) ( )1 2 2 2 2– –V V B V B I rε≡ = (3.69)

Combining the last three equations

1 2    I I I= +

    = + = +






+






ε ε ε ε1

1

2

2

1

1

2

2 1 2

1 1– –
–

V

r

V

r r r
V

r r
(3.70)

Hence, V is given by,

1 2 2 1 1 2

1 2 1 2

–
r r r r

V I
r r r r

ε ε+
=

+ + (3.71)

If we want to replace the combination by a single cell, between B
1
 and

B
2
, of emf ε

eq
 and internal resistance r

eq
, we would have

V = ε
eq 

– I r
eq

(3.72)

FIGURE 3.21 Two cells in

parallel. For connections
across A and C, the
combination can be

replaced by one cell of emf
ε

eq
 and internal resistances

r
eq

 whose values are given in

Eqs. (3.73) and (3.74).
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The last two equations should be the same and hence

1 2 2 1

1 2

eq

r r

r r

ε ε
ε

+
=

+ (3.73)

1 2

1 2

eq

r r
r

r r
=

+ (3.74)

We can put these equations in a simpler way,

1 2

1 1 1

eqr r r
= + (3.75)

1 2

1 2

eq

eqr r r

ε ε ε
= + (3.76)

In Fig. (3.21), we had joined the positive terminals
together and similarly the two negative ones, so that the

currents I
1
, I

2
 flow out of positive terminals. If the negative

terminal of the second is connected to positive terminal
of the first, Eqs. (3.75) and (3.76) would still be valid with

ε
 2
 → –ε

2

Equations (3.75) and (3.76) can be extended easily.
If there are n cells of emf ε

1
, . . . ε

n
 and of internal

resistances r
1
,... r

n
 respectively, connected in parallel, the

combination is equivalent to a single cell of emf ε
eq

 and
internal resistance r

eq
, such that

1 1 1

1r r req n

= + +... (3.77)

ε ε εeq

eq

n

nr r r
= + +1

1

... (3.78)

3.13  KIRCHHOFF’S RULES

Electric circuits generally consist of a number of resistors and cells
interconnected sometimes in a complicated way. The formulae we have
derived earlier for series and parallel combinations of resistors are not

always sufficient to determine all the currents and potential differences
in the circuit. Two rules, called Kirchhoff’s rules, are very useful for
analysis of electric circuits.

Given a circuit, we start by labelling currents in each resistor by a
symbol, say I, and a directed arrow to indicate that a current I flows
along the resistor in the direction indicated. If ultimately I is determined

to be positive, the actual current in the resistor is in the direction of the
arrow. If I turns out to be negative, the current actually flows in a direction
opposite to the arrow. Similarly, for each source (i.e., cell or some other

source of electrical power) the positive and negative electrodes are labelled,
as well as, a directed arrow with a symbol for the current flowing through
the cell. This will tell us the potential difference, V = V (P) – V (N) = ε – I r

Gustav Robert Kirchhoff
(1824 – 1887) German
physicist, professor at

Heidelberg and at
Berlin. Mainly known for
his development of

spectroscopy, he also
made many important
contributions to mathe-

matical physics, among
them, his first and
second rules for circuits.
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[Eq. (3.57) between the positive terminal P and the negative terminal N; I
here is the current flowing from N to P through the cell]. If, while labelling

the current I through the cell one goes from P to N,
then of course

V = ε + I r (3.79)

Having clarified labelling, we now state the rules

and the proof:
(a) Junction rule: At any junction, the sum of the

currents entering the junction is equal to the

sum of currents leaving the junction (Fig. 3.22).
This applies equally well if instead of a junction of
several lines, we consider a point in a line.

The proof of this rule follows from the fact that
when currents are steady, there is no accumulation
of charges at any junction or at any point in a line.

Thus, the total current flowing in, (which is the rate
at which charge flows into the junction), must equal
the total current flowing out.

(b) Loop rule: The algebraic sum of changes in

potential around any closed loop involving

resistors and cells in the loop is zero (Fig. 3.22).

This rule is also obvious, since electric potential is
dependent on the location of the point. Thus starting with any point if we
come back to the same point, the total change must be zero. In a closed

loop, we do come back to the starting point and hence the rule.

Example 3.6 A battery of 10 V and negligible internal resistance is
connected across the diagonally opposite corners of a cubical network

consisting of 12 resistors each of resistance 1 Ω (Fig. 3.23). Determine
the equivalent resistance of the network and the current along each
edge of the cube.

FIGURE 3.23

FIGURE 3.22 At junction a the current

leaving is I
1
 + I

2
 and current entering is I

3
.

The junction rule says I
3
 = I

1
 + I

2
. At point

h current entering is I
1
. There is only one

current leaving h and by junction rule
that will also be I

1
. For the loops ‘ahdcba’

and ‘ahdefga’, the loop rules give –30I
1
 –

41 I
3
 + 45 = 0 and –30I

1
 + 21 I

2
 – 80 = 0.
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Solution  The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the

problem which we can exploit to obtain the equivalent resistance of
the network.
The paths AA′, AD and AB are obviously symmetrically placed in the

network. Thus, the current in each must be the same, say, I. Further,
at the corners A′, B and D, the incoming current I must split equally
into the two outgoing branches. In this manner, the current in all

the 12 edges of the cube are easily written down in terms of I, using
Kirchhoff’s first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC′EA, and apply Kirchhoff’s second

rule:
–IR – (1/2)IR – IR + ε = 0

where R is the resistance of each edge and ε the emf of battery. Thus,

ε = 5
2

I R

The equivalent resistance R
eq

 of the network is

5

3 6
eqR R

I

ε
= =

For R = 1 Ω, R
eq

 = (5/6) Ω and for ε = 10 V, the total current (= 3I ) in

the network is
3I = 10 V/(5/6) Ω = 12 A, i.e., I = 4 A

The current flowing in each edge can now be read off from the

Fig. 3.23.

It should be noted that because of the symmetry of the network, the
great power of Kirchhoff’s rules has not been very apparent in Example 3.6.
In a general network, there will be no such simplification due to

symmetry, and only by application of Kirchhoff’s rules to junctions and
closed loops (as many as necessary to solve the unknowns in the network)
can we handle the problem. This will be illustrated in Example 3.7.

Example 3.7 Determine the current in each branch of the network
shown in Fig. 3.24.

FIGURE 3.24
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Solution  Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff’s rules. To reduce

the number of unknowns at the outset, the first rule of Kirchhoff is
used at every junction to assign the unknown current in each branch.
We then have three unknowns I

1
, I

2
 and I

3
 which can be found by

applying the second rule of Kirchhoff to three different closed loops.
Kirchhoff’s second rule for the closed loop ADCA gives,

10 – 4(I
1
– I

2
) + 2(I

2
 + I

3
 – I

1
) – I

1
 = 0 [3.80(a)]

that is, 7I
1
– 6I

2
 – 2I

3
 = 10

For the closed loop ABCA, we get

10 – 4I
2
– 2 (I

2
 + I

3
) – I

1
 = 0

that is, I
1
 + 6I

2
 + 2I

3
 =10 [3.80(b)]

For the closed loop BCDEB, we get

5 – 2 (I
2
 + I

3
) – 2 (I

2
 + I

3
 – I

1
) = 0

that is, 2I
1
 – 4I

2
 – 4I

3
 = –5 [3.80(c)]

Equations (3.80 a, b, c) are three simultaneous equations in three

unknowns. These can be solved by the usual method to give

I
1
 = 2.5A,   I

2
 = 

5

8
 A,   I

3
 = 

7
1

8
  A

The currents in the various branches of the network are

AB : 
5

8
 A,   CA : 

1
2

2
 A,   DEB : 

7
1

8
  A

AD : 
7

1
8

 A,   CD : 0 A,   BC : 
1

2
2

 A

It is easily verified that Kirchhoff’s second rule applied to the

remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second
rule for every closed loop of the network. For example, the total voltage

drop over the closed loop BADEB

5
5

8
4

15

8
4V V V+ ×





− ×





equal to zero, as required by Kirchhoff’s second rule.

3.14  WHEATSTONE BRIDGE

As an application of Kirchhoff’s rules consider the circuit shown in

Fig. 3.25, which is called the Wheatstone bridge. The bridge has

four resistors R
1
, R

2
, R

3
 and R

4
. Across one pair of diagonally opposite

points (A and C in the figure) a source is connected. This (i.e., AC) is

called the battery arm. Between the other two vertices, B and D, a

galvanometer G (which is a device to detect currents) is connected. This

line, shown as BD in the figure, is called the galvanometer arm.

For simplicity, we assume that the cell has no internal resistance. In
general there will be currents flowing across all the resistors as well as a

current I
g
 through G. Of special interest, is the case of a balanced bridge

where the resistors are such that I
g
 = 0. We can easily get the balance

condition, such that there is no current through G. In this case, the

Kirchhoff’s junction rule applied to junctions D and B (see the figure)
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